Goto

Collaborating Authors

 Los Angeles


Achieving Constant Regret in Linear Markov Decision Processes

Neural Information Processing Systems

We study the constant regret guarantees in reinforcement learning (RL). Our objective is to design an algorithm that incurs only finite regret over infinite episodes with high probability. We introduce an algorithm, Cert-LSVI-UCB, for misspecified linear Markov decision processes (MDPs) where both the transition kernel and the reward function can be approximated by some linear function up to misspecification level ฮถ. At the core of Cert-LSVI-UCB is an innovative certified estimator, which facilitates a fine-grained concentration analysis for multi-phase value-targeted regression, enabling us to establish an instance-dependent regret bound that is constant w.r.t. the number of episodes.


Matching the Statistical Query Lower Bound for k-Sparse Parity Problems with Sign Stochastic Gradient Descent

Neural Information Processing Systems

The k-sparse parity problem is a classical problem in computational complexity and algorithmic theory, serving as a key benchmark for understanding computational classes. In this paper, we solve the k-sparse parity problem with sign stochastic gradient descent, a variant of stochastic gradient descent (SGD) on two-layer fullyconnected neural networks.


Non-Euclidean Mixture Model for Social Network Embedding

Neural Information Processing Systems

It is largely agreed that social network links are formed due to either homophily or social influence. Inspired by this, we aim at understanding the generation of links via providing a novel embedding-based graph formation model. Different from existing graph representation learning, where link generation probabilities are defined as a simple function of the corresponding node embeddings, we model the link generation as a mixture model of the two factors. In addition, we model the homophily factor in spherical space and the influence factor in hyperbolic space to accommodate the fact that (1) homophily results in cycles and (2) influence results in hierarchies in networks. We also design a special projection to align these two spaces. We call this model Non-Euclidean Mixture Model, i.e., NMM.


Conformal Classification with Equalized Coverage for Adaptively Selected Groups

Neural Information Processing Systems

This paper introduces a conformal inference method to evaluate uncertainty in classification by generating prediction sets with valid coverage conditional on adaptively chosen features. These features are carefully selected to reflect potential model limitations or biases. This can be useful to find a practical compromise between efficiency--by providing informative predictions--and algorithmic fairness-- by ensuring equalized coverage for the most sensitive groups. We demonstrate the validity and effectiveness of this method on simulated and real data sets.


Fast Sampling via Discrete Non-Markov Diffusion Models with Predetermined Transition Time

Neural Information Processing Systems

Discrete diffusion models have emerged as powerful tools for high-quality data generation. Despite their success in discrete spaces, such as text generation tasks, the acceleration of discrete diffusion models remains under-explored. In this paper, we propose discrete non-Markov diffusion models (DNDM), which naturally induce the predetermined transition time set. This enables a training-free sampling algorithm that significantly reduces the number of function evaluations (i.e., calls to the neural network), making the sampling process much faster. Furthermore, we study the transition from finite to infinite step sampling, offering new insights into bridging the gap between discrete and continuous-time processes for discrete diffusion models. Extensive experiments on natural language generation and machine translation tasks demonstrate the superior performance of our method in terms of both generation speed and sample quality compared to existing methods for discrete diffusion models. Codes are available at https://github.com/




A Nearly Optimal and Low-Switching Algorithm for Reinforcement Learning with General Function Approximation

Neural Information Processing Systems

The exploration-exploitation dilemma has been a central challenge in reinforcement learning (RL) with complex model classes. In this paper, we propose a new algorithm, Monotonic Q-Learning with Upper Confidence Bound (MQL-UCB) for RL with general function approximation. Our key algorithmic design includes (1) a general deterministic policy-switching strategy that achieves low switching cost, (2) a monotonic value function structure with carefully controlled function class complexity, and (3) a variance-weighted regression scheme that exploits historical trajectories with high data efficiency. MQL-UCB achieves minimax optimal regret of ร•(d HK) when K is sufficiently large and near-optimal policy switching cost of ร•(dH), with d being the eluder dimension of the function class, H being the planning horizon, and K being the number of episodes.


Spectral Learning of Shared Dynamics Between Generalized-Linear Processes

Neural Information Processing Systems

Generalized-linear dynamical models (GLDMs) remain a widely-used framework within neuroscience for modeling time-series data, such as neural spiking activity or categorical decision outcomes. Whereas the standard usage of GLDMs is to model a single data source, certain applications require jointly modeling two generalizedlinear time-series sources while also dissociating their shared and private dynamics. Most existing GLDM variants and their associated learning algorithms do not support this capability. Here we address this challenge by developing a multi-step analytical subspace identification algorithm for learning a GLDM that explicitly models shared vs. private dynamics within two generalized-linear time-series. In simulations, we demonstrate our algorithm's ability to dissociate and model the dynamics within two time-series sources while being agnostic to their respective observation distributions. In neural data, we consider two specific applications of our algorithm for modeling discrete population spiking activity with respect to a secondary time-series. In both synthetic and real data, GLDMs learned with our algorithm more accurately decoded one time-series from the other using lowerdimensional latent states, as compared to models identified using existing GLDM learning algorithms.


Causal Imitation for Markov Decision Processes: a Partial Identification Approach

Neural Information Processing Systems

Imitation learning enables an agent to learn from expert demonstrations when the performance measure is unknown and the reward signal is not specified. Standard imitation methods do not generally apply when the learner and the expert's sensory capabilities mismatch and demonstrations are contaminated with unobserved confounding bias. To address these challenges, recent advancements in causal imitation learning have been pursued. However, these methods often require access to underlying causal structures that might not always be available, posing practical challenges. In this paper, we investigate robust imitation learning within the framework of canonical Markov Decision Processes (MDPs) using partial identification, allowing the agent to achieve expert performance even when the system dynamics are not uniquely determined from the confounded expert demonstrations. Specifically, first, we theoretically demonstrate that when unobserved confounders (UCs) exist in an MDP, the learner is generally unable to imitate expert performance. We then explore imitation learning in partially identifiable settings -- either transition distribution or reward function is non-identifiable from the available data and knowledge. Augmenting the celebrated GAIL method (Ho & Ermon, 2016), our analysis leads to two novel causal imitation algorithms that can obtain effective policies guaranteed to achieve expert performance.